
ME 234(b): Model Predictive
Control

Anushri Dixit
Spring 2022

Slides adapted from
Berkeley ME231 (by F. Borrelli, M. Morari, C. Jones)

Recap: Constrained Optimal Control

ceiling

ground

Desired
trajectory

where, the state constraint set is

the control constraint set is

and the terminal set is given by

1

Recap: Constrained Optimal Control

We can solve the above problem using the Batch Approach
1. With substitution:

2. Without substitution:

2

Receding Horizon Control

Ideally, we’d like to solve the constrained, infinite horizon optimal control
problem,

However, this problem has an infinite number of optimization variables,
so we cannot compute it.

We, however, can solve the finite-horizon truncation of this problem.

3

Receding Horizon Control

where, .

The above optimization problem is a truncation of the infinite horizon
problem wherein approximate the remaining cost and the
tail constraints, respectively.

4

How to solve

(OPT)

5

Notation

We can now tell exactly what each state refers to:
• The input u at time k computed at time t:
• The state x at time k computed at time t:
• We apply the input at every time-step t.

Note that this can be extended to time-varying systems too!

6

Implementation

Let’s look at how to implement this in MATLAB for a simple 2D system.

What we need:
• YALMIP: Makes it easy to set up optimization problems, well-

documented, with a lot of tutorials
• Solver: YALMIP uses a variety of solvers. You need to have a solver

that works best for your optimization problem.
• You can choose any other platform if you like!

– Examples: CVX, MPT3, CasADi …

7

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
x1

-0.5

0

0.5

1

x 2

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
x1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 2

-5 -4 -3 -2 -1 0 1
x1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 2

Stability Issues: Horizon Length
System:

N=2

N=12

N=50

8

Stability Issues: Cost weighting

Q = Q2

System:

Q=Q1
9

-5 -4 -3 -2 -1 0 1
x1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 2

-2 -1.5 -1 -0.5 0 0.5 1
x1

-0.2

0

0.2

0.4

0.6

0.8

1

x 2

Feasibility Issues
System:

Let’s look at a specific case
when the horizon N=12, Q=Q1.

We see that the system does not
converge to the origin (stability
issues).

But perhaps if we allow for more
iterations, the system will
eventually converge to the origin.

Let’s look at what happens after
200 time-steps instead of 100
steps.

10

-5 -4 -3 -2 -1 0 1
x1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 2

Feasibility Issues
System:

Let’s look at a specific case
when N=12, Q=Q1.

We see that the system does not
converge to the origin.

But perhaps if we allow for more
iterations, the system will
eventually converge to the origin.

Let’s look at what happens after
200 time-steps instead of 100
steps. Looks the same!

Unfortunately, the problem
becomes infeasible early on, i.e.,
no solution can be obtained.

11

-5 -4 -3 -2 -1 0 1
x1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 2

Feasibility and Stability

More generally we have the following issues:
• Stability: System does not converge to the origin,
• Feasibility: MPC problem does not have a solution after some

time-steps.

What can we do so that our MPC controller satisfies the above
properties?

12

Feasibility and Stability

More generally we have the following issues:
• Stability: System does not converge to the origin,
• Feasibility: MPC problem does not have a solution after some

time-steps.

What can we do so that our MPC controller satisfies the above
properties?

Recall: MPC is a finite-horizon controller. These problems arise
because of the “short-sightedness” of the controller.

We want to mimic an infinite-horizon controller. How?

13

Feasibility and Stability

We need a good terminal cost and terminal constraints.
Goal:
• Stability: Converge to the origin ⇒ cost is always decreasing

across the iterations,
• Recursive feasibility: If the optimization is feasible at the first

iteration, it is always feasible ⇒ existence of a feasible control
input for all time-steps when starting at a feasible initial
condition.

What’s the simplest condition that will fix our MPC?

14

Terminal set,
Let’s look at the code again.

Earlier we saw that when N=12,
Q=Q1, the solution made the system
unstable and not recursively
feasible.

Let’s add the terminal constraint,

What happens?

System:

-5 -4 -3 -2 -1 0 1
x1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 2

15

-5 -4 -3 -2 -1 0 1
x1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 2

Terminal set,
Let’s look at the code again.

Earlier we saw that when N=12,
Q=Q1, the solution made the system
unstable and not recursively
feasible.

Let’s add the terminal constraint,

What happens?

Stability and Recursive feasibility is
attained!
How?

System:

16

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
x1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 2

Proof: Stability & Recursive feasibility for

Recursive Feasibility: Let the solution of the optimization at time t = 0,
be . We apply the first control input.

17

Proof: Stability & Recursive feasibility for

Recursive Feasibility: Let the solution of the optimization at time t = 0,
be . We apply the first control input.

At the next iteration when, t = 1 (or more generally, t = Δt), we know
there exists a solution to the optimization problem. One such solution
at time t=1, is .

And so on…

18

Proof: Stability & Recursive feasibility for

Terminal
constraint

Recursive Feasibility
If the optimization is feasible at time , it is
feasible for all future time steps.

19

Proof: Stability & Recursive feasibility for

Stability: Let the solution of the optimization at time t = 0, be
. . We apply the first control input.

At the next iteration when, t = 1 (or more generally, t = Δt), we know
there exists a solution to the optimization problem. One such solution
at time t=1, is .

Can we show the cost of the optimization is decreasing across
iterations?

20

Proof: Stability & Recursive feasibility for

Stability:

21

Proof: Stability & Recursive feasibility for

Stability: Hence, we can show that the cost is decreasing across
iterations,

We can show that the system (and the cost) must eventually converge
to 0.
⇒ Asymptotic Stability

22

Terminal set

We showed that the above MPC is recursively feasible and stable!

Why is the terminal set {0} impractical?
The set of initial conditions from which the optimization is feasible at all
is very small.

How do we improve this?

23

General form of terminal set and terminal cost

• We want to design a terminal set such that once we’re inside this
terminal set, there is always a way to get to the origin while
satisfying constraints.

• Our terminal cost should be such that it gives us information on the
true cost to reach the origin once we’re in the terminal set.

To achieve this, we first need to understand set invariance.
Consider a control law, .
Now the closed-loop system is expressed as:

Invariant set: Consider an autonomous system .
The set is invariant if .

Let’s go back to our 2D example!
24

Control invariant sets

Invariant set: Consider an autonomous system .
The set is invariant if .

Let’s go back to our 2D example!

Blue region: Invariant set with
control constraints.

Red region: Invariant set in the
absence of control constraints.

System:

25

General form of terminal set and terminal cost

For the 2D example, let’s use the
control invariant set as our
terminal set.

System:

26

-5 -4 -3 -2 -1 0 1
x1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 2

Without terminal set
N=12, Q=Q1

General form of terminal set and terminal cost

For the 2D example, let’s use the
control invariant set as our
terminal set.

Remains in the control invariant
set and is recursively feasible (#
iterations = 1000).

Intuition: If the terminal set is
control invariant, the MPC
controller is recursively feasible.
(we will prove this in the next
couple of slides).

No convergence to the origin!

System:

27

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
x1

-0.2

0

0.2

0.4

0.6

0.8

1

x 2

With invariant terminal set
N=12, Q=Q1

General form of terminal set and terminal cost

Theorem:

Consider the closed-loop system under the MPC control law .
The closed-loop system is asymptotically stable and the MPC
optimization is recursively feasible if the following statements hold:
1. Stage cost is positive-definite (0 at the origin, strictly positive

everywhere else),

28

General form of terminal set and terminal cost

Theorem:

Consider the closed-loop system under the MPC control law .
The closed-loop system is asymptotically stable and the MPC
optimization is recursively feasible if the following statements hold:
1. Stage cost is positive-definite (0 at the origin, strictly positive

everywhere else),
2. The sets are closed and contain the origin,
3. The terminal set is control invariant.

29

General form of terminal set and terminal cost

Theorem:

Consider the closed-loop system under the MPC control law .
The closed-loop system is asymptotically stable and the MPC
optimization is recursively feasible if the following statements hold:
1. Stage cost is positive-definite (0 at the origin, strictly positive

everywhere else),
2. The sets are closed and contain the origin,
3. The terminal set is control invariant.
4. Terminal cost is decreasing over time & satisfies the following

condition wherein are continuous and positive-definite
functions (terminal cost is a continuous Lyapunov function)

30

Terminal cost Stage cost (we have
assumed it to be quadratic

)

Terminal set and cost for a LTI system with a
quadratic cost
Consider the unconstrained linear OCP with a quadratic cost that we
looked at in the previous lectures (also called the Linear-Quadratic
regulator). We saw that the infinite-horizon control law is solved
through the recursive approach

where,

31

Terminal set and cost for a LTI system with a
quadratic cost
Consider the unconstrained linear OCP with a quadratic cost that we
looked at in the previous lectures (also called the Linear-Quadratic
regulator). We saw that the infinite-horizon control law is solved
through the recursive approach

where,

We choose the terminal weight, .

32

Terminal set and cost for a LTI system with a
quadratic cost
Consider the unconstrained linear OCP with a quadratic cost that we
looked at in the previous lectures (also called the Linear-Quadratic
regulator). We saw that the infinite-horizon control law is solved
through the recursive approach

where,

We choose the terminal weight, .
We choose the terminal set to be the biggest invariant set (or the
maximal invariant set) for the closed-loop system with the above
control law designed for an infinite-horizon, unconstrained OCP.

33

Proof Sketch: MPC Stability & Recursive feasibility

Recursive Feasibility: Like we did in the case, we start
with the solution of the above optimization problem at time t=0 given
by . We apply the first control input.

34

Proof Sketch: MPC Stability & Recursive feasibility

Recursive Feasibility: Like we did in the case, we start
with the solution of the above optimization problem at time t=0 given
by . We apply the first control input.

At the next time-step, t=1, a candidate solution for the MPC
optimization is . The MPC is
feasible with the solution .

At the next time-step, we can similarly find a candidate solution
based on the solution at the previous time-step and so on…

35

Proof Sketch: MPC Stability & Recursive feasibility

Stability: We have established that a solution will always exist for the
above MPC optimization. Can we show that the cost is decreasing?

36

Proof Sketch: MPC Stability & Recursive feasibility

Stability: Consider the optimal cost at time t

We know that at time t+1, a candidate solution is given by
. So we have the

suboptimal cost,

37

Proof Sketch: MPC Stability & Recursive feasibility

Stability: We can show that the cost is decreasing across each
iteration. Once we show decreasing cost, we can also show stability.

38

-5 -4 -3 -2 -1 0 1
x1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
x1

-0.5

0

0.5

1

x 2

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
x1

-0.2

0

0.2

0.4

0.6

0.8

1

x 2

Summary: Example

For the 2D example, let’s use the
control invariant set as our terminal
set and the terminal cost given by
using the Algebraic Riccati equation.

System:

39

Without terminal set,
terminal constraint N=12,

Q=Q1

With invariant terminal set only
N=12, Q=Q1

With invariant terminal set and
terminal constraint N=12, Q=Q1

Summary

40

• We looked at the MPC optimization and analyzed its closed-loop
properties: stability and recursive feasibility. We tried to mimic an
infinite-horizon controller to get these properties.

• Recursive feasibility is obtained if we have a terminal set that is
invariant. However, terminal sets are not often used in practice,
o These sets are hard to compute,
o They reduce the size of the set of initial conditions from

which the MPC provides a solution, also called the region of
attraction.

o The {0} terminal set makes the region of attraction even
smaller.

• Stability is obtained with terminal costs that are Lyapunov
functions.

• Often, we can get away with just making the length of the
horizon longer.

What’s next?

Consider a drone in hover.
We want it to:

1. Track a desired trajectory,
2. While not crashing into the ceiling

or the ground,
3. And account for disturbances.

ceiling

ground

Desired
trajectory

wind

